nhagiao.edu.vn
  • Tin Tức
Giáo Dục

Lý thuyết tính chất ba đường phân giác của một góc

avatar
00:35 02/07/2024

I. Kiến thức cơ bản

1. Định lí 1 (thuận)

Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó

GT : \(M \in Oz\) là tia phân giác của \(\widehat {xOy}\)

\(MA ⊥ Ox; MB ⊥ Oy\)

KL: \(MA = MB\)

2. Định lý 2 (đảo)

Điểm nằm bên trong một góc và cách đều hai cạnh của góc thì nằm trên phân giác của góc đó.

GT : \(M\) ở trong \(\widehat {xOy}\)

\(MA ⊥ Ox; MB ⊥ Oy\)

\(MA=MB\)

KL: \(OM\) là tia phân giác của \(\widehat {xOy}\)

Nhận xét:

Tập hợp các điểm nằm bên trong một góc và cách đều hai cạnh của góc là tia phân giác của góc đó.

3. Tính chất ba đường phân giác của tam giác

Định lí 1: Trong một tam giác cân, đường phân giác của góc ở đỉnh đồng thời là đường trung tuyến của tam giác đó.

\(\Delta ABC:\) \(\left. \begin{array}{l}AB = AC\\\widehat {{A_1}} = \widehat {{A_2}}\end{array} \right\} \Rightarrow BD = DC\)

Định lí 2: Ba đường phân giác của một tam giác cùng đi qua một điểm. Điểm này cách đều ba cạnh của tam giác đó.

Tam giác $ABC$ (hình vẽ) có ba đường phân giác giao nhau tại $I$. Khi đó

\(\begin{array}{l}{\widehat A_1} = {\widehat A_2},{\widehat B_1} = {\widehat B_2},{\widehat C_1} = {\widehat C_2}.\\ID = IE = IF\end{array}\)

II. Các dạng toán thường gặp

Dạng 1: Chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau

Phương pháp:

Sử dụng các tính chất:

+ Ta sử dụng định lý: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó

\(\left. \begin{array}{l}M \in Oz\\MA \bot Ox;MB \bot Oy\end{array} \right\} \)\(\Rightarrow MA = MB\)

+ Giao điểm của hai đường phân giác của hai góc trong một tam giác nằm trên đường phân giác của góc thứ ba

+ Giao điểm các đường phân giác của tam giác cách đều ba cạnh của tam giác.

Dạng 2: Chứng minh hai góc bằng nhau

Phương pháp:

Ta sử dụng định lý: Điểm nằm bên trong một góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.

Dạng 3: Chứng minh tia phân giác của một góc

Phương pháp:

Ta sử dụng một trong các cách sau:

- Sử dụng định lý: Điểm nằm bên trong một góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.

- Sử dụng định nghĩa phân giác

- Chứng minh hai góc bằng nhau nhờ hai tam giác bằng nhau

Dạng 4: Bài toán về đường phân giác với các tam giác đặc biệt (tam giác cân, tam giác đều)

Phương pháp:

Ta sử dụng định lý: Trong một tam giác cân, đường phân giác của góc ở đỉnh đồng thời là đường trung tuyến của tam giác đó.

 Bài viết liên quan
Phân biệt Advance và Advancement trong tiếng Anh

Advance và Advancement là hai từ rất dễ bị nhầm lẫn trong tiếng Anh. Vậy Advance và Advancement là gì?...

Danh từ của Apply là gì Cách dùng và Word Form của Apply

Apply có mấy dạng danh từ? Word form của apply có những loại nào? Bài viết này sẽ giúp bạn...

Châu Âu gồm những nước nào Danh sách các nước trong liên minh Châu Âu

Gwendolyn Phung 27/12/2023 Theo dõi Pantravel trên Châu Âu - lục địa...

Từ điển Anh Việtmatch là gì

matchmatch /mætʃ/ danh từ diêm ngòi (châm súng hoả mai...) danh từ cuộc thi đấua match of football: một cuộc...

Acid Formic HCOOH Hợp chất acid hữu cơ đơn giản nhất

Acid formic là gì? Acid formic là dạng hợp chất acid hữu cơ đơn giản nhất trong nhóm Cacboxylic với...

Bạn nên biết Có bao nhiêu thể loại sách trên thế giới

Sách là nơi lưu giữ những nguồn tri thức vô giá của nhân loại từ thế hệ này sang thế...

Tất tần tật về cấu trúc Otherwise trong tiếng Anh

Trong ngữ pháp hay giao tiếp tiếng Anh, chắc hẳn bạn đã từng bắt gặp từ “Otherwise”. Tuy nhiên không...

Nội dung 3 định luật Newton và bài tập vận dụng chi tiết

3 Định luật Newton được đưa vào chương trình giảng dạy Vật Lý 10 vì tính ứng dụng rộng rãi...

Trọng Lượng Hàng Hóa Và Cách Tính Trọng Lượng Hàng Hóa Trong Vận Chuyển

TRỌNG LƯỢNG HÀNG HÓA VÀ CÁCH TÍNH TRỌNG LƯỢNG HÀNG HÓA TRONG VẬN CHUYỂN Trọng lượng hàng hóa là gì?...

Chinh phục toàn bộ cấu trúc suppose trong 5 phút

Khi muốn nói lên suy nghĩ của mình, chắc hẳn bạn thường bắt đầu với cụm “I think that”. Tuy...

  • Giới thiệu
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • RSS
nhagiao.edu.vn
  • Giới thiệu
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • RSS
  • Tin Tức