Cho hình chóp S.ABC có tam giác ABC vuông tại A, AB = a, AC = 2a. SA vuông góc với mặt phẳng đáy (ABC) và \(SA = a\sqrt 3 \). Tính thể tích V của khối chóp S.ABC.
A. \(V = {a^3}\sqrt 3 \)
B. \(V = \frac{{2\sqrt 3 }}{3}{a^3}\)
C. \(V = \frac{{\sqrt 3 }}{3}{a^3}\)
D. \(V = \frac{{\sqrt 3 }}{4}{a^3}\).
Trả lời
Đáp án đúng là: C
Thể tích khối chóp S.ABC là:
\(V = \frac{1}{3}SA.{S_{ABC}} = \frac{1}{3}.a\sqrt 3 .\frac{1}{2}.a.2{\rm{a = }}\frac{{\sqrt 3 }}{3}{a^3}\)
Vậy ta chọn đáp án C.